Phase of Bose-Einstein Condensate Interacting with a Time-Dependent Laser Field

Zhao-xian Yu,¹ Shuo Jin,² Zhi-yong Jiao,³ and Ji-suo Wang⁴

Received June 30, 2006; accepted September 4, 2006 Published Online: January 12 2007

By using of the invariant theory, we have studied phase of Bose-Einstein condensate in a double-well potential interacting with a time-dependent single-mode travelingwave laser field, the dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

KEY WORDS: phase; Bose-Einstein condensation.

PACS number: 03.65.Vf; 03.75.Mn.

1. INTRODUCTION

Recently, much attention has been paid to the investigation of Bose-Einstein condensation (BEC) in dilute and ultracold gases of neutral alkali-metal atoms using a combination of laser and evaporative cooling (Anderson *et al.*, 1995; Bradley *et al.*, 1995; Davis *et al.*, 1995; Mewes *et al.*, 1996a,b, 1997; Jin *et al.*, 1996) due to the optical properties (Politzer *et al.*, 1991, 1997; Lewenstein *et al.*, 1994, 1995; Lewenstein *et al.*, 1993, 1994; Javanainen *et al.*, 1994, 1995a,b, 1996), statistical properties (Grossman *et al.*, 1995, 1994, 1996a, 1997a,b; Kuang *et al.*, 1998, 2001), phase properties (Javanainen *et al.*, 1994, 1995a,b 1996; Javanainen *et al.*, 1996a,b; Cirac *et al.*, 1996, 2002, 2003, 2001; Castin *et al.*, 1997), and tunneling effect (Javanainen *et al.*, 1986, 1991; Jack *et al.*, 1997; Milburn *et al.*, 1997; Grossman *et al.*, 1995; Kuang *et al.*, 2000, 2001; Wu *et al.*, 2000; Wu *et al.*,

1182

0020-7748/07/0500-1182/0 © 2007 Springer Science+Business Media, LLC

¹Department of Physics, Beijing Information Science and Technology University, Beijing 100101, China.

² Department of Physics, Beihang University, Beijing 100083, China.

³ Department of Applied Physics, China University of Petroleum (East China), Dongying 257061, China.

⁴ Department of Physics, Liaocheng University, Shandong, 252059 China; e-mail: zxyu1965@163. com.

1996; Wu et al., 2001, 2006; Liu et al., 2002; Liu et al., 2000; Niu et al., 1999; Liang et al., 2003; Li et al., 2001).

As we known that the quantum invariant theory proposed by Lewis and Riesenfeld (Lewis *et al.*, 1969) is a powerful tool for treating systems with timedependent Hamiltonians. It was generalized in (Gao *et al.*, 1991) by introducing the concept of basic invariants and used to study the geometric phases (Berry *et al.*, 1984; Aharonov *et al.*, 1987) in connection with the exact solutions of the corresponding time-dependent Schrödinger equations. The discovery of Berry's phase is not only a breakthrough in the older theory of quantum adiabatic approximations (Berry, 1984; Simon, 1983), but also provides us with new insights in many physical phenomena. The concept of Berry's phase has developed in some different directions (Richardson *et al.*, 1988; Wilczek *et al.*, 1984; Moody *et al.*, 1986, 1987; Sun *et al.*, 1990; Sun, 1998 a,b; Sun, 1998; Sun, 2001).

Recently, the dynamics of an atomic Bose-Einstein condensate in a doublewell potential interacting with a single-mode traveling-wave laser field has been studied under electric dipole and rotating-wave approximations (Wang *et al.*, 2000). In this paper, by using of the invariant theory, we shall study the dynamical and the geometric phases of Bose-Einstein condensate in a double-well potential interacting with a time-dependent single-mode traveling-wave laser field.

2. MODEL

We consider that the atoms are trapped in a symmetrical potential denoted by $V(x) = \frac{1}{2}M\omega^2(|x| - d)^2$, where *M* is the atomic mass, ω the angular frequency, *d* half the distance between the two minima of the potential V(x). This potential has two wells and hereafter they will be called the left (*L*) and right (*R*) well. When a time-dependent single-mode traveling-wave laser field is applied, ignoring the noncondensed atoms and letting $E_0 = 0$, we can obtain the Hamiltonian of this system according to the Jaynes-Cummings model (Jaynes *et al.*, 1963) and using the same treatment method proposed in (Wang *et al.*, 2000) (in the unit of $\bar{h} = 1$),

$$\hat{H}(t) = (\omega_a + \Omega_0)\hat{c}^{\dagger}\hat{c} + (\omega_a - \Omega_0)\hat{d}^{\dagger}\hat{d} + \omega_f \hat{a}^{\dagger}\hat{a} + g\sqrt{N_c}(\hat{c}^{\dagger}\hat{a}e^{i\Delta t} + \hat{a}^{\dagger}\hat{c}e^{-i\Delta t}).$$
(1)

The difference between Eq. (1) and the Hamiltonian given in (Wang, 2000) lies in that a time-dependent single-mode traveling-wave laser field is considered. In Eq. (1), ω_a (in the unit of $\bar{h} = 1$) is the energy interval between the ground and the excited states, Ω_0 is the tunneling frequency of the ground state, \hat{a}^{\dagger} and \hat{a} are the creation and annihilation operators for a photon with energy ω_f (in the unit of $\bar{h} = 1$), $\Delta = \omega_f - \omega_a$ is the detuning. g denotes the dipole coupling constant, N_c is the condensed atomic number in the ground state. \hat{c}^{\dagger} and \hat{d}^{\dagger} are the Hermitian

1183

adjoint operators of \hat{c} and \hat{d} defined by

$$\hat{c} = \frac{1}{\sqrt{2}}(\hat{b}_{L_0} + \hat{b}_{R_0}), \quad \hat{d} = \frac{1}{\sqrt{2}}(\hat{b}_{L_0} - \hat{b}_{R_0}).$$
 (2)

3. GEOMETRIC AND DYNAMICAL PHASES

For self-consistent, we first illustrate the Lewis-Riesenfeld (L-R) invariant theory Lewis and Risenteed, 1969. For a one-dimensional system whose Hamiltonian $\hat{H}(t)$ is time-dependent, then there exists an operator $\hat{I}(t)$ called invariant if it satisfies the equation

$$i\frac{\partial\hat{I}(t)}{\partial t} + [\hat{I}(t), \hat{H}(t)] = 0.$$
(3)

The eigenvalue equation of the time-dependent invariant $|\lambda_n, t\rangle$ is given

$$\hat{I}(t)|\lambda_n, t\rangle = \lambda_n |\lambda_n, t\rangle, \tag{4}$$

where $\frac{\partial \lambda_n}{\partial t} = 0$. The time-dependent Schrödinger equation for this system is

$$i\frac{\partial|\psi(t)\rangle_s}{\partial t} = \hat{H}(t)|\psi(t)\rangle_s.$$
(5)

According to the L-R invariant theory, the particular solution $|\lambda_n, t\rangle_s$ of Eq. (5) is different from the eigenfunction $|\lambda_n, t\rangle$ of $\hat{I}(t)$ only by a phase factor exp $[i\delta_n(t)]$, i.e.,

$$|\lambda_n, t\rangle_s = \exp[i\delta_n(t)]|\lambda_n, t\rangle, \tag{6}$$

which shows that $|\lambda_n, t\rangle_s$ (n = 1, 2, ...) forms a complete set of the solutions of Eq. (5). Then the general solution of the Schrödinger equation (5) can be written by

$$|\psi(t)\rangle_s = \sum_n C_n \exp[i\delta_n(t)]|\lambda_n, t\rangle,$$
 (7)

where

$$\delta_n(t) = \int_0^t dt' \left\langle \lambda_n, t' \left| i \frac{\partial}{\partial t'} - \hat{H}(t') | \lambda_n, t' \right\rangle, \tag{8}$$

and $C_n = \langle \lambda_n, 0 | \psi(0) \rangle_s$.

In order to obtain the exact solution of Eq. (5), we rewrite Eq. (1) as

$$\hat{H} = \hat{H}^{(1)} + \hat{H}^{(2)},\tag{9}$$

where

$$\hat{H}^{(1)} = (\omega_a - \Omega_0)\hat{d}^{\dagger}\hat{d}, \qquad (10)$$

$$\hat{H}^{(2)} = (\omega_a + \Omega_0)\hat{c}^{\dagger}\hat{c} + \omega_f \hat{a}^{\dagger}\hat{a} + g\sqrt{N_c}(\hat{c}^{\dagger}\hat{a}e^{i\Delta t} + \hat{a}^{\dagger}\hat{c}e^{-i\Delta t}), \qquad (11)$$

one has $[\hat{H}^{(1)}, \hat{H}^{(2)}] = 0$. Furthermore, we define operators \hat{K}_+ , \hat{K}_- and \hat{K}_0 as follows:

$$\hat{K}_{+} = \hat{a}^{\dagger}\hat{c}, \quad \hat{K}_{-} = \hat{c}^{\dagger}\hat{a}, \quad \hat{K}_{0} = \hat{a}^{\dagger}\hat{a} - \hat{c}^{\dagger}\hat{c},$$
 (12)

which hold the commutation relations

$$[\hat{K}_0, \hat{K}_{\pm}] = \pm 2\hat{K}_{\pm}, \quad [\hat{K}_+, \hat{K}_-] = \hat{K}_0, \tag{13}$$

it is easy to prove that operators \hat{K}_+ , \hat{K}_- and \hat{K}_0 together with the Hamiltonian $\hat{H}^{(2)}$ construct a quasi-algebra.

Then we can get the L-R invariant as follows

$$\hat{I}(t) = \cos\theta \hat{K}_0 - e^{-i\varphi} \sin\theta \hat{K}_+ - e^{i\varphi} \sin\theta \hat{K}_-,$$
(14)

here θ and φ are determined by $i\partial \hat{I}(t)/\partial t + [\hat{I}(t), \hat{H}^{(2)}(t)] = 0$, and satisfy the relations

$$\dot{\theta} = 2g\sqrt{N_c}\sin(\varphi - \Delta t), \tag{15}$$

$$\dot{\theta}\cos\theta\sin\varphi + (\dot{\varphi} + \omega_a + \Omega_0 - \omega_f)\sin\theta\cos\varphi - 2g\sqrt{N_c}\cos\theta\cos\Delta t = 0,$$
(16)

$$\dot{\theta}\cos\theta\cos\varphi - (\dot{\varphi} + \omega_a + \Omega_0 - \omega_f)\sin\theta\sin\varphi + 2g\sqrt{N_c}\cos\theta\sin\Delta t = 0,$$
(17)

where dot denotes the time derivative.

We can construct the unitary transformation

$$\hat{V}(t) = \exp[\sigma \hat{K}_{+} - \sigma^* \hat{K}_{-}], \qquad (18)$$

where $\sigma = \frac{\theta}{2}e^{-i\varphi}$ and $\sigma^* = \frac{\theta}{2}e^{i\varphi}$. The invariant $\hat{I}(t)$ can be transformed into a new time-independent operator \hat{I}_V :

$$\hat{I}_V = \hat{V}^{\dagger}(t)\hat{I}(t)\hat{V}(t) = \hat{K}_0.$$
(19)

Correspondingly, we can get the eigenvalue equation of operator $\hat{I}_V(t)$

$$\hat{I}_V |m\rangle_{\hat{a}} |n\rangle_{\hat{c}} = (m-n) |m\rangle_{\hat{a}} |n\rangle_{\hat{c}}, \qquad (20)$$

where we have used $\hat{a}^{\dagger}\hat{a}|m\rangle_{\hat{a}} = m|m\rangle_{\hat{a}}$ and $\hat{c}^{\dagger}\hat{c}|n\rangle_{\hat{c}} = n|n\rangle_{\hat{c}}$.

In terms of the unitary transformation $\hat{V}(t)$ and the Baker-Campbell-Hausdoff formula (Wei *et al.*, 1963)

$$\hat{V}^{\dagger}(t)\frac{\partial\hat{V}(t)}{\partial t} = \frac{\partial\hat{L}}{\partial t} + \frac{1}{2!} \left[\frac{\partial\hat{L}}{\partial t}, \hat{L} \right] + \frac{1}{3!} \left[\left[\frac{\partial\hat{L}}{\partial t}, \hat{L} \right], \hat{L} \right] + \frac{1}{4!} \left[\left[\left[\frac{\partial\hat{L}}{\partial t}, \hat{L} \right], \hat{L} \right], \hat{L} \right] + \dots,$$
(21)

where $\hat{V}(t) = \exp[\hat{L}(t)]$, one has

$$\hat{H}_{V}^{(2)}(t) = \hat{V}^{\dagger}(t)\hat{H}^{(2)}(t)\hat{V}(t) - i\hat{V}^{\dagger}(t)\frac{\partial\hat{V}(t)}{\partial t}$$

$$= \left[(\omega_{a} + \Omega_{0})\sin^{2}\frac{\theta}{2} + \omega_{f}\cos^{2}\frac{\theta}{2} - g\sqrt{N_{c}}\sin\theta\cos(\varphi - \Delta t) + \frac{\dot{\varphi}}{2}(1 - \cos\theta) \right]\hat{a}^{\dagger}\hat{a} + \left[(\omega_{a} + \Omega_{0})\cos^{2}\frac{\theta}{2} + \omega_{f}\sin^{2}\frac{\theta}{2} + g\sqrt{N_{c}}\sin\theta\cos(\varphi - \Delta t) - \frac{\dot{\varphi}}{2}(1 - \cos\theta) \right]\hat{c}^{\dagger}\hat{c}.$$
(22)

It is easy to find that $\hat{H}^{(2)}(t)$ differs from \hat{I}_V only by a time-dependent c-number factor. Thus we can get the general solution of the time-dependent Schrödinger equation Eq. (5)

$$|\Psi(t)\rangle_{s} = \sum_{m} \sum_{n} \sum_{l} C_{mn} C_{l} \exp[i\delta_{mn}(t)]\hat{V}(t)|m >_{\hat{a}} |n >_{\hat{c}} |l\rangle_{\hat{d}}, \quad (23)$$

with the coefficients $C_{mn} = \langle m, n, t = 0 | \Psi(0) \rangle_s$, and $\hat{d}^{\dagger} \hat{d} | l \rangle_{\hat{d}} = l | l \rangle_{\hat{d}}$. The phase $\delta_{mn}(t) = \delta^d_{mn}(t) + \delta^g_{mn}(t)$ includes the dynamical phase

$$\delta_{mn}^{d}(t) = -m \int_{t_0}^{t} \left[(\omega_a + \Omega_0) \sin^2 \frac{\theta}{2} + \omega_f \cos^2 \frac{\theta}{2} - g\sqrt{N_c} \sin \theta \cos(\varphi - \Delta t) \right] dt'$$
$$-n \int_{t_0}^{t} \left[(\omega_a + \Omega_0) \cos^2 \frac{\theta}{2} + \omega_f \sin^2 \frac{\theta}{2} + g\sqrt{N_c} \sin \theta \cos(\varphi - \Delta t) \right] dt'$$
$$+l \int_{t_0}^{t} (\omega_a - \Omega_0) dt', \qquad (24)$$

and the geometric phase

$$\delta_{mn}^{g}(t) = (n-m) \int_{t_0}^{t} \frac{\dot{\varphi}}{2} (1 - \cos\theta) dt'.$$
 (25)

In particular, the geometric phase becomes in the case of the cyclical evolution

$$\delta_{mn}^g(t) = \frac{1}{2}(n-m)\oint (1-\cos\theta)d\varphi,$$
(26)

which is the geometric Aharonov-Anandan phase.

4. CONCLUSIONS

In conclusion, by using of the L-R invariant theory, we have studied the dynamical and the geometric phases of Bose-Einstein condensate in a double-well potential interacting with a time-dependent single-mode traveling-wave laser field. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is obtained under the cyclical evolution.

ACKNOWLEDGMENT

This work was partly supported by the NSF of China under Grant No. 10574060.

REFERENCES

Aharonov, Y. and Anandan, J. (1987). Physical Review Letters 58, 1593.

- Anderson, M. H., Ensher, J. R., Matthens, M. R., Wieman, C. E., and Cornell, E. A. (1995). *Science* 269, 198.
- Berry, M. V. (1984). Proceedings of the Royal Society London, Series A 392, 45.
- Bradley, C. C., Sackett, C. A., Tollet, J. J., and Hulet, R. G. (1995). Physical Review Letters 75, 1687.

Castin, Y. and Dalibard, J. (1997). Physical Review A 55, 4330.

Chou, T. T., Yang, C. N., and Yu, L. H. (1996). Physical Review A 53, 4257.

Chou, T. T., Yang, C. N., and Yu, L. H. (1997). Physical Review A 55, 1179.

- Cirac, J. I., Gardiner, C. W., Naraschewski, M., and Zoller, P. (1996). *Physical Review A* 54, R3714.
- Davis, K. B., Mewes, M. O., Andrews, M. R., Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. (1995). *Physical Review Letters* 75, 3969.
- Gao, X. C., Xu J. B. and Qian, T. Z. (1991). Physical Review A 44, 7016.

Grossman, S. and Holthans, M. (1995a). Physics Letters A 208, 188.

Grossman, S. and Holthans, M. (1995b). Zeitschrift fuer Naturforschung A: Physical Sciences 50, 323.

- Imamoglu, A. and Kennedy, T. A. B. (1997). Physical Review A 55R849.
- Jack, M. W., Collett, M. J., and Walls, D. F. (1996). Physical Review A 54, R4625.
- Jack, M. W., Collett, M. J., and Walls, D. F. (1997). Physical Review A 55, 2109.

Javanainen, J. (1986). Physical Review Letters 57, 3164.

- Javanainen, J. (1991). Physics Letters A 161, 207.
- Javanainen, J. (1994). Physical Review Letters 72, 2375.

Javanainen, J. (1995a). Physical Review Letters 75, 1927.

- Javanainen, J. (1995b). Physical Review Letters 75, 3969.
- Javanainen, J. (1996). Physical Review A 54, R4629.
- Javanainen, J. and Ruostekoski, J. (1995). Physical Review A 52, 3033.
- Javanainen, J. and Wilkens, M. (1997). Physical Review Letters 78, 4675.
- Javanainen, J. and Yoo, S. M. (1996). Physical Review Letters 76, 161.
- Jaynes, E. T. and Cummings, F. W. (1963). Proceedings of the IEEE 51, 89.
- Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1996). *Physical Review Letters* 77, 420.
- Kuang, L. M. (1998). Communications in Theoretical Physics 30, 161.
- Kuang, L. M. and Ouyang, Z. W. (2000). Physical Review A 61, 023604.
- Lewenstein, M. and You, L. (1993) Physical Review Letters 71, 1339.
- Lewenstein, M., You, L., Copper, J., and Burnett, K. (1994). Physical Review A 50, 2207.
- Lewis, H. R. and Riesenfeld, W. B. (1969). Math. J. Phys. 10, 1458.
- Li, W. D., Zhou, X. J., Wang, Y. Q., Liang, J. Q., and Liu, W. M. (2001). Physical Review A 64, 015602.
- Liang, J. J., Liang, J. Q., and Liu, W. M. (2003). Physical Review A 68, 043605.
- Liu, W. M., Fan, W. B., Zheng, W. M., Liang, J. Q., and Chui, S. T. (2002). *Physical Review Letters* 88, 170408.
- Liu, W. M., Wu, B., and Niu, Q. (2000). Physical Review Letters 84, 2294.
- Mead, C. A. (1987). Physical Review Letters 59, 161.
- Mewes, M. O., Andrews, M. R., Druten, N. J., Kurn, D. M., Durfee, D. S., and Ketterle, W. (1996a). *Physical Review Letters* 77, 416.
- Mewes, M. O., Andrews, M. R., Druten, N. J., Kurn, D. M., Durfee, D. S., and Ketterle, W. (1996b). *Physical Review Letters* 77, 988.
- Mewes, M. O., Andrews, M. R., Druten, N. J., Kurn, D. M., Durfee, D. S., and Ketterle, W. (1997). *Physical Review Letters* 78, 582.
- Milburn, G. J., Corney, J., Wright, E. M., and Walls, D. F. (1997). Physical Review A 55, 4318.
- Moody, J., et al. (1986). Physical Review Letters 56, 893.
- Moy, G. M., Hope, J. J., and Savage, C. M. (1997). Physical Review A 55, 3631.
- Niu, Q., Wang, X. D., Kleinman, L., Liu, W. M., Nicholson, D. M. C., and Stocks, G. M. (1999). *Physical Review Letters* 83, 207.
- Politzer, H. D. (1991). Physical Review A 43, 6444.
- Richardson, D. J., et al. (1988). Physical Review Letters 61, 2030.
- Ruostekoski, J. and Walls, D. F. (1997a). Physical Review A 55, 3625.
- Ruostekoski, J. and Walls, D. F. (1997b). Physical Review A 56, 2996.
- Simon, B. (1983). Physical Review Letters 51, 2167.
- Stoof, H. T. C. (1994). Physical Review A 49, 3824.
- Sun, C. P. (1988a). Physical Review D 38, 298.
- Sun, C. P. (1988b). Journal of Physics A 21, 1595.
- Sun, C. P. (1990). Physical Review D 41, 1349.
- Sun, C. P. (1993). Physical Review A 48, 393.
- Sun, C. P., et al. (2001). Physical Review A 63, 012111.
- Timmermans, E., Tommasini, P., and Huang, K. (1997). Physical Review A 55, 3645.
- Wang, H. J., Yi, X. X., and Ba, X. W. (2000). Physical Review A 62, 023601.
- Wei, J. and Norman, E. J. (1963). Mathematical Physics 4, 575.
- Wilczek, F. and Zee, A. (1984). Physical Review Letters 25, 2111.
- Wong, T., Collett, M. J., and Walls, D. F. (1996). Physical Review A 54, R3718.
- Wu, Y. (1996). Physical Review A 54, 4534.
- Wu, Y., Yang, X., and Sun, C. P. (2000). Physical Review A 62, 063603.
- Wu, Y., Yang, X., and Xiao, Y. (2001). Physical Review Letters 862200.
- Wu, Y., et al., (2006). Opt.Letters 31, 519.

You, L., Lewenstein, M., and Copper, J. (1994). *Physical Review A* 50, R3565.
You, L., Lewenstein, M., and Copper, J. (1995). *Physical Review A* 51, 4712.
Yu, Z. X. and Jiao, Z. Y. (2001a) *Communications in Theoretical Physics* 36, 449.
Yu, Z. X. and Jiao, Z. Y. (2001b). *Communications in Theoretical Physics* 36, 240.
Yu, Z. X. and Jiao, Z. Y. (2001). *Communications in Theoretical Physics* 40, 425.
Yu, Z. X. and Jiao, Z. Y. (2001). *Communications in Theoretical Physics* 36, 240.
Zou, X. B., Min, H., and Oh, S. D. (2002). *Physics Letters A* 301, 101.